Electronic and magnetic structure of C60/Fe3O4(001): a hybrid interface for organic spintronics

نویسندگان

  • P. K. Johnny Wong
  • Wen Zhang
  • Kai Wang
  • Gerrit van der Laan
  • Yongbing Xu
  • Wilfred G. van der Wiel
  • Michel P. de Jong
چکیده

We report on the electronic and magnetic characterization of the hybrid interface constituted of C60 molecules and an epitaxial Fe3O4(001) surface grown on GaAs(001). Using X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD), we demonstrate that a stable C60 sub-monolayer (ML) can be retained on the Fe3O4(001) surface upon in situ annealing at 250 C. A carbon K-edge dichroic signal of 1% with respect to the XAS C 1s / p* peak intensity has been observed, indicative of a weaker electronic interaction of C60 with Fe3O4(001) compared to the previously reported case of C60/Fe(001). Remarkably, the Fe L-edge XMCD spectrum of Fe3O4(001) reveals a reduced Fe/Fe ratio upon C60 sub-ML adsorption. This observation has been ascribed to electron donation by the C60 molecules, as a consequence of the high work function of Fe3O4(001). Our present work underlines the significance of chemical interactions between inorganic magnetic surfaces and molecular adsorbates for tuning of the electronic and magnetic properties of the interfaces, which have a profound impact on spin-polarized charge transport in hybrid organic–inorganic spintronic devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Highly ordered C60 films on epitaxial Fe/MgO(001) surfaces for organic spintronics

Hybrid interfaces between ferromagnetic surfaces and carbon-based molecules play an important role in organic spintronics. The fabrication of devices with well defined interfaces remains challenging, however, hampering microscopic understanding of their operation mechanisms. We have studied the crystallinity and molecular ordering of C60 films on epitaxial Fe/MgO(001) surfaces, using X-ray diff...

متن کامل

Fe3O4-chitosan nanoparticles as a robust magnetic catalyst for efficient synthesis of 5-substituted hydantoins using zinc cyanide

In this paper, Fe3O4-chitosan nanoparticles were prepared by the immobilization of chitosan on the surface of Fe3O4 nanoparticles. Then, the 5-substituted hydantoins were synthesized from the condensation of aldehyde derivatives, ammonium carbonate and zinc cyanide as a well-known cyanating agent by the magnetic Fe3O4-chitosan nanoparticles under neat conditions. Fe3O4-Chitosan nanocatalyst as ...

متن کامل

Fe3O4-chitosan nanoparticles as a robust magnetic catalyst for efficient synthesis of 5-substituted hydantoins using zinc cyanide

In this paper, Fe3O4-chitosan nanoparticles were prepared by the immobilization of chitosan on the surface of Fe3O4 nanoparticles. Then, the 5-substituted hydantoins were synthesized from the condensation of aldehyde derivatives, ammonium carbonate and zinc cyanide as a well-known cyanating agent by the magnetic Fe3O4-chitosan nanoparticles under neat conditions. Fe3O4-Chitosan nanocatalyst as ...

متن کامل

Magnetic properties of bcc-Fe(001)/C₆₀ interfaces for organic spintronics.

The magnetic structure of the interfaces between organic semiconductors and ferromagnetic contacts plays a key role in the spin injection and extraction processes in organic spintronic devices. We present a combined computational (density functional theory) and experimental (X-ray magnetic circular dichroism) study on the magnetic properties of interfaces between bcc-Fe(001) and C(60) molecules...

متن کامل

Effect of solvent’s types on the structure and magnetic properties of the as-coprecipitated Fe3O4 nanoparticles

Magnetite (Fe3O4) nanoparticles were synthesized by coprecipitation route. Coprecipitation is a simple, reproducible and accessible technique relying on the coprecipitation of Fe2+ and Fe3+ cations by NaOH as base at low temperature (~80 °C). In this work, the role of different solvents (H2O, ethylene glycol, diethylene glycol, triethylene glycol) on phase, structure, microstructure and magneti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012